HEAL DSpace

Artificial neural networks in the fault diagnosis of technological systems: a case study in chemical engineering process

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzafestas, SG en
dc.contributor.author Dalianis, PJ en
dc.date.accessioned 2014-03-01T01:44:39Z
dc.date.available 2014-03-01T01:44:39Z
dc.date.issued 1996 en
dc.identifier.issn 10631100 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/24442
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0030407772&partnerID=40&md5=ea8223319917ab5d804b861480879b62 en
dc.subject.other Adaptive systems en
dc.subject.other Backpropagation en
dc.subject.other Cellulose en
dc.subject.other Chemical engineering en
dc.subject.other Computer simulation en
dc.subject.other Expert systems en
dc.subject.other Failure analysis en
dc.subject.other Mathematical models en
dc.subject.other Online systems en
dc.subject.other Alkali cellulose preparation process en
dc.subject.other Fault diagnosis en
dc.subject.other Neural networks en
dc.title Artificial neural networks in the fault diagnosis of technological systems: a case study in chemical engineering process en
heal.type journalArticle en
heal.publicationDate 1996 en
heal.abstract The last decade, a lot of attention is given to adaptive methods based on artificial neural networks, which can significantly improve the symptom interpretation and system performance in case of malfunctioning. Such methods are especially considered in cases where no explicit algorithms or models for the problem under investigation exist. In such problems, automatic interpretation of faulty symptoms with the use of artificial neural network classifiers is recommended. Two different models of artificial neural networks, the extended back-propagation and the radial basis function, integrated in a hybrid system, where an expert mechanism supervises them, are discussed and applied with appropriate simulations to the diagnosis of a subprocess of the alkali-cellulose preparation process. en
heal.publisher Gordon & Breach Science Publ Inc, Newark, NJ, United States en
heal.journalName Engineering Simulation en
dc.identifier.volume 13 en
dc.identifier.issue 6 en
dc.identifier.spage 939 en
dc.identifier.epage 954 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής