dc.contributor.author |
Tzafestas, SG |
en |
dc.contributor.author |
Dalianis, PJ |
en |
dc.date.accessioned |
2014-03-01T01:44:39Z |
|
dc.date.available |
2014-03-01T01:44:39Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
10631100 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24442 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0030407772&partnerID=40&md5=ea8223319917ab5d804b861480879b62 |
en |
dc.subject.other |
Adaptive systems |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Cellulose |
en |
dc.subject.other |
Chemical engineering |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Expert systems |
en |
dc.subject.other |
Failure analysis |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Online systems |
en |
dc.subject.other |
Alkali cellulose preparation process |
en |
dc.subject.other |
Fault diagnosis |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Artificial neural networks in the fault diagnosis of technological systems: a case study in chemical engineering process |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The last decade, a lot of attention is given to adaptive methods based on artificial neural networks, which can significantly improve the symptom interpretation and system performance in case of malfunctioning. Such methods are especially considered in cases where no explicit algorithms or models for the problem under investigation exist. In such problems, automatic interpretation of faulty symptoms with the use of artificial neural network classifiers is recommended. Two different models of artificial neural networks, the extended back-propagation and the radial basis function, integrated in a hybrid system, where an expert mechanism supervises them, are discussed and applied with appropriate simulations to the diagnosis of a subprocess of the alkali-cellulose preparation process. |
en |
heal.publisher |
Gordon & Breach Science Publ Inc, Newark, NJ, United States |
en |
heal.journalName |
Engineering Simulation |
en |
dc.identifier.volume |
13 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
939 |
en |
dc.identifier.epage |
954 |
en |