HEAL DSpace

Determination of due dates in job shop scheduling by simulated annealing

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mamalis, AG en
dc.date.accessioned 2014-03-01T01:44:40Z
dc.date.available 2014-03-01T01:44:40Z
dc.date.issued 1996 en
dc.identifier.issn 09515240 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/24451
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0030145024&partnerID=40&md5=99cbb86840fc252f71150b074824c94f en
dc.subject.other Algorithms en
dc.subject.other Computer simulation en
dc.subject.other Flexible manufacturing systems en
dc.subject.other Machinery en
dc.subject.other Optimization en
dc.subject.other Planning en
dc.subject.other Simulated annealing en
dc.subject.other Due dates en
dc.subject.other Group technology en
dc.subject.other Job shop scheduling en
dc.subject.other Production planning en
dc.subject.other Scheduling en
dc.title Determination of due dates in job shop scheduling by simulated annealing en
heal.type journalArticle en
heal.publicationDate 1996 en
heal.abstract The scheduling of n jobs to m machines in a job shop is considered. A predefined due date, a release time and the minimization of the maximal job's lateness is the objective assigned to each job. A search space consisting of triads (job, operation, machine) is formulated, and an iterrative improvement approach, the simulated annealing method, is then used to obtain feasible and global optimal solution. The simulated annealing method is applied to two alternative energy functions to model the maximum lateness. For calculation of the first energy function at each step, complete schedules are created and the lateness of each job is derived by abstracting the job's completion time from the corresponding due date. The second energy function is calculated on the basis of partial estimates often used by pairwise interchange techniques. The convergence of the algorithm in relation to the initial temperature, temperature iterrations and temperature cycles has been verified in various case studies. Specific characteristics of the scheduling, such as its dimensionality and the deviation of the total processing time from the due dates, were considered. Common characteristics derived were subsequently used for the definition of an efficient annealing schedule. Keywords: Simulation, simulated annealing, manufacturing systems, production planning, group technology. en
heal.journalName Computer Integrated Manufacturing Systems en
dc.identifier.volume 9 en
dc.identifier.issue 2 en
dc.identifier.spage 65 en
dc.identifier.epage 72 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής