dc.contributor.author | Polyrakis, IA | en |
dc.date.accessioned | 2014-03-01T01:44:44Z | |
dc.date.available | 2014-03-01T01:44:44Z | |
dc.date.issued | 1996 | en |
dc.identifier.issn | 00029947 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/24463 | |
dc.relation.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-21344455048&partnerID=40&md5=43a65d842abf39e9aa380493fe2b1d0d | en |
dc.title | Finite-dimensional lattice-subspaces of C(Ω) and curves of ℝn | en |
heal.type | journalArticle | en |
heal.publicationDate | 1996 | en |
heal.abstract | Let x1, . . . , xn be linearly independent positive functions in C(Ω), let X be the vector subspace generated by the xi and let β denote the curve of ℝn determined by the function β(t) = 1/z(t)(x1(t),x2(t), . . . , xn(t)), where z(t) = x1(t) +x2(t) + ⋯ + xn(t). We establish that X is a vector lattice under the induced ordering from C(Ω) if and only if there exists a convex polygon of ℝn with n vertices containing the curve β and having its vertices in the closure of the range of β. We also present an algorithm which determines whether or not X is a vector lattice and in case X is a vector lattice it constructs a positive basis of X. The results are also shown to be valid for general normed vector lattices. © 1996 American Mathematical Society. | en |
heal.journalName | Transactions of the American Mathematical Society | en |
dc.identifier.volume | 348 | en |
dc.identifier.issue | 7 | en |
dc.identifier.spage | 2793 | en |
dc.identifier.epage | 2810 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |