dc.contributor.author |
Alexopoulos, Vassilios |
en |
dc.contributor.author |
Kollias, Stefanos |
en |
dc.date.accessioned |
2014-03-01T01:44:45Z |
|
dc.date.available |
2014-03-01T01:44:45Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
12100552 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24474 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0029719145&partnerID=40&md5=d6e3796d9fbc906549df8322cd16677e |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Image processing |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Spurious signal noise |
en |
dc.subject.other |
Vision |
en |
dc.subject.other |
Fuzzy subsystem |
en |
dc.subject.other |
Intelligent action based image recognition system |
en |
dc.subject.other |
Neural network classifier |
en |
dc.subject.other |
Visual information processing |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Intelligent action-based image recognition system |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
This paper presents a novel intelligent system for recognition of images or scenes, which includes neural network architectures and is inspired by human perception actions. In particular, a recurrent neural network subsystem is used to extract features from the images; these features being associated to the way humans perceive visual information. A neural network classifier, followed by a fuzzy subsystem, is used for interpretation of the extracted features. Results are presented using images of objects, that are deformed and/or corrupted by noise, which illustrate the capabilities of the proposed system. |
en |
heal.publisher |
IDG, Prague, Czech Republic |
en |
heal.journalName |
Neural Network World |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
251 |
en |
dc.identifier.epage |
258 |
en |