dc.contributor.author | Polyrakis, IA | en |
dc.date.accessioned | 2014-03-01T01:45:07Z | |
dc.date.available | 2014-03-01T01:45:07Z | |
dc.date.issued | 1996 | en |
dc.identifier.issn | 0002-9947 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/24549 | |
dc.subject.classification | Mathematics | en |
dc.title | Finite-dimensional lattice-subspaces of C(Omega) and curves of R(n) | en |
heal.type | journalArticle | en |
heal.language | English | en |
heal.publicationDate | 1996 | en |
heal.abstract | Let x(1),...,x(n) be linearly independent positive functions in C(Omega), let X be the vector subspace generated by the x(i) and let beta denote the curve of R(n) determined by the function beta(t) = 1/z(t)(x(1)(t),x(2)(t),...,x(n)(t)), where z(t) = x(1)(t) + x(2)(t) +...+ x(n)(t). We establish that X is a vector lattice under the induced ordering from C(Omega) if and only if there exists a convex polygon of R(n) with n vertices containing the curve beta and having its vertices in the closure of the range of beta. We also present an algorithm which determines whether or not X is a vector lattice and in case X is a vector lattice it constructs a positive basis of X. The results are also shown to be valid for general normed vector lattices. | en |
heal.publisher | AMER MATHEMATICAL SOC | en |
heal.journalName | TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY | en |
dc.identifier.isi | ISI:A1996UX91000014 | en |
dc.identifier.volume | 348 | en |
dc.identifier.issue | 7 | en |
dc.identifier.spage | 2793 | en |
dc.identifier.epage | 2810 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |