dc.contributor.author |
Mesbahi, M |
en |
dc.contributor.author |
Papavassilopoulos, G |
en |
dc.date.accessioned |
2014-03-01T01:45:28Z |
|
dc.date.available |
2014-03-01T01:45:28Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24590 |
|
dc.subject |
Bilinear Matrix Inequality |
en |
dc.subject |
Linear Complementarity Problem |
en |
dc.subject |
Mathematical Programming |
en |
dc.subject |
Robust Control |
en |
dc.subject |
Linear Program |
en |
dc.title |
A cone programming approach to the bilinear matrix inequality problem and its geometry |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02614437 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02614437 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
We discuss an approach for solving the Bilinear Matrix Inequality (BMI) based on its con- nections with certain problems defined over matrix cones. These problems are, among others, the cone generalization of the linear programming (LP) and the linear complementarity problem (LCP) (referred to as the Cone-LP and the Cone-LCP, respectively). Specifically, we show that solving a given BMI is |
en |
heal.journalName |
Mathematical Programming |
en |
dc.identifier.doi |
10.1007/BF02614437 |
en |