dc.contributor.author |
Kattis, M |
en |
dc.contributor.author |
Providas, E |
en |
dc.contributor.author |
Boutalis, Y |
en |
dc.contributor.author |
Kalamkarov, A |
en |
dc.date.accessioned |
2014-03-01T01:45:31Z |
|
dc.date.available |
2014-03-01T01:45:31Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24613 |
|
dc.subject |
Interface Crack |
en |
dc.subject |
Potential Function |
en |
dc.subject |
Stress Field |
en |
dc.subject |
Stress Intensity Factor |
en |
dc.title |
Antiplane deformation of a partially bonded elliptical inclusion |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0167-8442(97)00006-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0167-8442(97)00006-2 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
A new method that introduces two holomorphic potential functions (the two-phase potentials) is applied to analyze the antiplane deformation of an elliptical inhomogeneity partially-bonded to an infinite matrix. Elastic fields are obtained when either the matrix is subject to a uniform longitudinal shear or the inhomogeneity undergoes a uniform shear transformation. The stress field possesses the square-root singularity of a |
en |
heal.journalName |
Theoretical and Applied Fracture Mechanics |
en |
dc.identifier.doi |
10.1016/S0167-8442(97)00006-2 |
en |