dc.contributor.author |
Papadopoulos, M |
en |
dc.contributor.author |
Papadopoulos, L |
en |
dc.contributor.author |
Garcia, E |
en |
dc.date.accessioned |
2014-03-01T01:45:35Z |
|
dc.date.available |
2014-03-01T01:45:35Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24636 |
|
dc.subject |
Degree of Freedom |
en |
dc.subject |
Finite Element |
en |
dc.subject |
Finite Element Model |
en |
dc.subject |
Genetic Algorithm |
en |
dc.subject |
Heuristic Search |
en |
dc.subject |
Natural Frequency |
en |
dc.subject |
Objective Function |
en |
dc.subject |
Point Estimation |
en |
dc.subject |
Unconstrained Optimization |
en |
dc.title |
Eigen-analysis using optimization with Rayleigh's quotient |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0045-7949(97)80862-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0045-7949(97)80862-0 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
An eigen-analysis is usually required if it is desired to obtain the natural frequencies and mode shapes (i.e. eigen-parameters) from a finite element mass and stiffness matrix. In certain instances, however, only the lowest and/or largest natural frequencies are of interest. It is shown that determining the lowest and largest eigen-parameters can be formulated as an unconstrained optimization with Rayleigh's |
en |
heal.journalName |
Computers & Structures |
en |
dc.identifier.doi |
10.1016/S0045-7949(97)80862-0 |
en |