dc.contributor.author |
Ladopoulos, E |
en |
dc.contributor.author |
Zisis, V |
en |
dc.date.accessioned |
2014-03-01T01:45:35Z |
|
dc.date.available |
2014-03-01T01:45:35Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24640 |
|
dc.subject |
banach space |
en |
dc.subject |
Existence and Uniqueness |
en |
dc.subject |
Existence of Solution |
en |
dc.subject |
Fluid Mechanics |
en |
dc.subject |
Incompressible Fluid |
en |
dc.subject |
Linear Equations |
en |
dc.subject |
Singular Integral Equation |
en |
dc.title |
Existence and uniqueness for non-linear singular integral equations used in fluid mechanics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1023058024885 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1023058024885 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
Non-linear singular integral equations are investigated in connection with some basic applications in two-dimensional fluid mechanics. A general existence and uniqueness analysis is proposed for non-linear singular integral equations defined on a Banach space. Therefore, the non-linear equations are defined over a finite set of contours and the existence of solutions is investigated for two different kinds of equations, the |
en |
dc.identifier.doi |
10.1023/A:1023058024885 |
en |