dc.contributor.author |
Kandilakis, D |
en |
dc.contributor.author |
Papageorgiou, N |
en |
dc.date.accessioned |
2014-03-01T01:45:43Z |
|
dc.date.available |
2014-03-01T01:45:43Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24701 |
|
dc.relation.uri |
http://emis.math.tifr.res.in/journals/CMUC/pdf/cmuc9702/kandipap.pdf |
en |
dc.subject |
banach space |
en |
dc.subject |
Existence Theorem |
en |
dc.subject |
integrodifferential equation |
en |
dc.subject |
measure of noncompactness |
en |
dc.subject |
Monotone Iterative Technique |
en |
dc.subject |
Normal Cone |
en |
dc.subject |
Periodic Solution |
en |
dc.title |
Periodic solutions for nonlinear Volterra integrodifferential equations in Banach spaces |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
In this paper we examine periodic integrodifferential equations in Banach spaces. When the cone is regular, we prove two existence theorems for the extremal solutions in the order interval determined by an upper and a lower solution. Both theorems use only the order structure of the problem and no compactness condition is assumed. In the last section we ask the |
en |