dc.contributor.author |
Ambjørn, J |
en |
dc.contributor.author |
Anagnostopoulos, K |
en |
dc.date.accessioned |
2014-03-01T01:45:44Z |
|
dc.date.available |
2014-03-01T01:45:44Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24713 |
|
dc.subject |
2d gravity |
en |
dc.subject |
Correlation Function |
en |
dc.subject |
Critical Phenomena |
en |
dc.subject |
Critical Point |
en |
dc.subject |
Distance Scale |
en |
dc.subject |
Distribution Function |
en |
dc.subject |
Finite Size Scaling |
en |
dc.subject |
Fractal Dimension |
en |
dc.subject |
Geodesic Distance |
en |
dc.subject |
potts model |
en |
dc.subject |
Quantum Gravity |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Space Time |
en |
dc.title |
Quantum geometry of 2D gravity coupled to unitary matter |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0550-3213(97)00259-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0550-3213(97)00259-9 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
We show that there exists a divergent correlation length in 2D quantum gravity for the matter fields close to the critical point provided one uses the invariant geodesic distance as the measure of distance. The corresponding reparameterization invariant two-point functions satisfy all scaling relations known from the ordinary theory of critical phenomena and the KPZ exponents are determined by the |
en |
heal.journalName |
Nuclear Physics B |
en |
dc.identifier.doi |
10.1016/S0550-3213(97)00259-9 |
en |