dc.contributor.author |
Ambjørn, J |
en |
dc.contributor.author |
Anagnostopoulos, K |
en |
dc.contributor.author |
Ichihara, T |
en |
dc.contributor.author |
Jensen, L |
en |
dc.contributor.author |
Kawamoto, N |
en |
dc.contributor.author |
Watabiki, Y |
en |
dc.contributor.author |
Yotsuji, K |
en |
dc.date.accessioned |
2014-03-01T01:45:44Z |
|
dc.date.available |
2014-03-01T01:45:44Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24714 |
|
dc.subject |
Anomalous Dimension |
en |
dc.subject |
Conformal Field Theory |
en |
dc.subject |
Finite Size Scaling |
en |
dc.subject |
Fractal Dimension |
en |
dc.subject |
Geodesic Distance |
en |
dc.subject |
Quantum Gravity |
en |
dc.subject |
Sampling Technique |
en |
dc.title |
Quantum geometry of topological gravity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0370-2693(97)00183-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0370-2693(97)00183-4 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
We study a c = −2 conformal field theory coupled to two-dimensional quantum gravity by means of dynamical triangulations. We define the geodesic distance r on the triangulated surface with N triangles, and show that dim[rdH] = dim[N], where the fractal dimension dH = 3.58 ± 0.04. This result lends support to the conjecture dH = −2α1α−1, where α−n is |
en |
heal.journalName |
Physics Letters B |
en |
dc.identifier.doi |
10.1016/S0370-2693(97)00183-4 |
en |