Quantum geometry of topological gravity

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Ambjørn, J en
dc.contributor.author Anagnostopoulos, K en
dc.contributor.author Ichihara, T en
dc.contributor.author Jensen, L en
dc.contributor.author Kawamoto, N en
dc.contributor.author Watabiki, Y en
dc.contributor.author Yotsuji, K en
dc.date.accessioned 2014-03-01T01:45:44Z
dc.date.available 2014-03-01T01:45:44Z
dc.date.issued 1997 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/24714
dc.subject Anomalous Dimension en
dc.subject Conformal Field Theory en
dc.subject Finite Size Scaling en
dc.subject Fractal Dimension en
dc.subject Geodesic Distance en
dc.subject Quantum Gravity en
dc.subject Sampling Technique en
dc.title Quantum geometry of topological gravity en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0370-2693(97)00183-4 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0370-2693(97)00183-4 en
heal.publicationDate 1997 en
heal.abstract We study a c = −2 conformal field theory coupled to two-dimensional quantum gravity by means of dynamical triangulations. We define the geodesic distance r on the triangulated surface with N triangles, and show that dim[rdH] = dim[N], where the fractal dimension dH = 3.58 ± 0.04. This result lends support to the conjecture dH = −2α1α−1, where α−n is en
heal.journalName Physics Letters B en
dc.identifier.doi 10.1016/S0370-2693(97)00183-4 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record