dc.contributor.author | Spiliotis, J | en |
dc.date.accessioned | 2014-03-01T01:45:49Z | |
dc.date.available | 2014-03-01T01:45:49Z | |
dc.date.issued | 1997 | en |
dc.identifier.issn | 00954616 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/24753 | |
dc.relation.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-0031147644&partnerID=40&md5=4e6d87065fb4390d693a4e00d3d2c455 | en |
dc.subject | Boundary | en |
dc.subject | Complex | en |
dc.subject | Control | en |
dc.subject | First-initial | en |
dc.subject | Monge-Ampère | en |
dc.subject | Parabolic | en |
dc.subject | Stochastic integral | en |
dc.title | A complex parabolic type Monge-Ampère equation | en |
heal.type | journalArticle | en |
heal.publicationDate | 1997 | en |
heal.abstract | The complex parabolic type Monge-Ampère equation we are dealing with is of the form (∂u/∂t) det[∂2u/∂zi ∂z̄j] = f in B x (0, T), u = φ on Γ, where B is the unit ball in ℂd, d > 1, and Γ is the parabolic boundary of B x (0, T). Solution u is proved unique in the class C (B̄ x [0, T]) ∩ W∞,loc2, 1 (B x (0, T)). © 1997 Springer-Verlag New York Inc. | en |
heal.journalName | Applied Mathematics and Optimization | en |
dc.identifier.volume | 35 | en |
dc.identifier.issue | 3 | en |
dc.identifier.spage | 265 | en |
dc.identifier.epage | 282 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |