HEAL DSpace

Application of self-organizing neural networks to multiradar data fusion

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Wann, C-D en
dc.contributor.author Thomopoulos, SCA en
dc.date.accessioned 2014-03-01T01:45:53Z
dc.date.available 2014-03-01T01:45:53Z
dc.date.issued 1997 en
dc.identifier.issn 00913286 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/24775
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-3643111473&partnerID=40&md5=e6134080f1d968f06e2c30aa4d03358d en
dc.subject Clustering en
dc.subject Data fusion en
dc.subject Dignet en
dc.subject Neural networks en
dc.subject Self-organization en
dc.subject Sensor fusion en
dc.subject Signal processing en
dc.subject Target detection en
dc.title Application of self-organizing neural networks to multiradar data fusion en
heal.type journalArticle en
heal.publicationDate 1997 en
heal.abstract The self-organizing neural network Dignet is used in the design of a two-stage parallel data fusion system. The data fusion is applied to target detection problems in a multichannel moving target indication (MTI) system. Features of the received data from three different radar channels are extracted via digital signal processing techniques. Pulse compression, clutter canceling, and the fast Fourier transform (FFT) are used to transform data from the time-range domain to the range-Doppler domain for feature processing. A first-stage Dignet module on each channel is used for feature clustering and prefiltering. The clustering results from each channel Dignet module are passed on to the fusion Dignet for the second-stage clustering. Map regularization, circular metric, and contrast enhancement are used to resolve the misalignment problem of features on the range-Doppler maps from sensors on different channels. Each first-stage Dignet module performs feature extraction and clustering as a filter-upon-demand module that generates adaptiveness as it is required by the data clustering. Experimental results on field data have shown that a Dignet-based multiradar data fusion system successfully detects a moving target embedded in clutter. © 1997 Society of Photo-Optical Instrumentation Engineers. en
heal.journalName Optical Engineering en
dc.identifier.volume 36 en
dc.identifier.issue 3 en
dc.identifier.spage 799 en
dc.identifier.epage 813 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής