HEAL DSpace

Discrete morphological size distributions and densities: Estimation techniques and applications

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sivakumar, K en
dc.contributor.author Goutsias, J en
dc.date.accessioned 2014-03-01T01:45:55Z
dc.date.available 2014-03-01T01:45:55Z
dc.date.issued 1997 en
dc.identifier.issn 10179909 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/24797
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0002350524&partnerID=40&md5=cd8a4fe76dc939db923f2f21d46b79d6 en
dc.title Discrete morphological size distributions and densities: Estimation techniques and applications en
heal.type journalArticle en
heal.publicationDate 1997 en
heal.abstract Morphological size distributions and densities are frequently used as descriptors of granularity or texture within an image. They have been successfully employed in a number of image processing and analysis tasks, including shape analysis, multiscale shape representation, texture classification, and noise filtering. In most cases however it is not possible to analytically compute these quantities. In this paper, we study the problem of estimating the (discrete) morphological size distribution and density of random images, by means of empirical as well as Monte Carlo estimators. Theoretical and experimental results demonstrate clear superiority of the Monte Carlo estimation approach. Examples illustrate the usefulness of the proposed estimators in traditional image processing and analysis problems. © 1997 SPIE and IS&T. en
heal.journalName Journal of Electronic Imaging en
dc.identifier.volume 6 en
dc.identifier.issue 1 en
dc.identifier.spage 31 en
dc.identifier.epage 53 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής