HEAL DSpace

Globally Consistent Range Scan Alignment for Environment Mapping

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lu, F en
dc.contributor.author Milios, E en
dc.date.accessioned 2014-03-01T01:45:56Z
dc.date.available 2014-03-01T01:45:56Z
dc.date.issued 1997 en
dc.identifier.issn 09295593 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/24803
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0031249780&partnerID=40&md5=4a99b1460267d3114f041c16760a2ca9 en
dc.subject Laser range scanning en
dc.subject Mapping en
dc.subject Range scan alignment en
dc.subject Range scan registration en
dc.subject Sensor-based mobile robotics en
dc.subject.other Computer simulation en
dc.subject.other Data processing en
dc.subject.other Distance measurement en
dc.subject.other Mapping en
dc.subject.other Mathematical models en
dc.subject.other Navigation en
dc.subject.other Problem solving en
dc.subject.other Scanning en
dc.subject.other Sensors en
dc.subject.other Maximum likelihood criterion en
dc.subject.other Odometry en
dc.subject.other Range scan alignment en
dc.subject.other Range scan registration en
dc.subject.other World model en
dc.subject.other Mobile robots en
dc.title Globally Consistent Range Scan Alignment for Environment Mapping en
heal.type journalArticle en
heal.publicationDate 1997 en
heal.abstract A robot exploring an unknown environment may need to build a world model from sensor measurements. In order to integrate all the frames of sensor data, it is essential to align the data properly. An incremental approach has been typically used in the past, in which each local frame of data is aligned to a cumulative global model, and then merged to the model. Because different parts of the model are updated independently while there are errors in the registration, such an approach may result in an inconsistent model. In this paper, we study the problem of consistent registration of multiple frames of measurements (range scans), together with the related issues of representation and manipulation of spatial uncertainties. Our approach is to maintain all the local frames of data as well as the relative spatial relationships between local frames. These spatial relationships are modeled as random variables and are derived from matching pairwise scans or from odometry. Then we formulate a procedure based on the maximum likelihood criterion to optimally combine all the spatial relations. Consistency is achieved by using all the spatial relations as constraints to solve for the data frame poses simultaneously. Experiments with both simulated and real data will be presented. en
heal.journalName Autonomous Robots en
dc.identifier.volume 4 en
dc.identifier.issue 4 en
dc.identifier.spage 333 en
dc.identifier.epage 349 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής