dc.contributor.author |
Uzunoglu, NK |
en |
dc.contributor.author |
Yova, D |
en |
dc.contributor.author |
Stamatakos, GS |
en |
dc.date.accessioned |
2014-03-01T01:45:58Z |
|
dc.date.available |
2014-03-01T01:45:58Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
10833668 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24816 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031185617&partnerID=40&md5=35ab8ee318997bb2767205f5483aabd0 |
en |
dc.subject |
Ectacytometry |
en |
dc.subject |
Erythrocyte deformability |
en |
dc.subject |
Erythrocytes |
en |
dc.subject |
Flow cytometry |
en |
dc.subject |
Light scattering |
en |
dc.subject.other |
Blood |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Calculations |
en |
dc.subject.other |
Cells |
en |
dc.subject.other |
Electric fields |
en |
dc.subject.other |
Fourier transforms |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Ectacytometry |
en |
dc.subject.other |
Erythrocyte deformability |
en |
dc.subject.other |
Erythrocytes |
en |
dc.subject.other |
Flow cytometry |
en |
dc.subject.other |
Light scattering |
en |
dc.title |
Light scattering by pathological and deformed erythrocytes: An integral equation model |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
A novel mathematical model of light scattering by pathological and deformed erythrocytes is presented. An erythrocyte is modeled as a homogeneous triaxial dielectric ellipsoid of complex index of refraction. Both its position and orientation in a given cartesian coordinate system are considered arbitrary. The analysis is based on the Lippman-Schwinger integral equation for the electric field. The corresponding (singular) integral equation for the scattering is transformed into an integral equation for the Fourier transform of the electric field inside the scatterer. The latter equation has a nonsingular kernel. It is solved by reducing it by quadrature into a linear set of equations. The resulting solutions are used to calculate the scattering amplitude. Several tests ensuring the validity of the approach along with sample calculations are presented. © 1997 Society of Photo-Optical Instrumentation Engineers. |
en |
heal.journalName |
Journal of Biomedical Optics |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
310 |
en |
dc.identifier.epage |
318 |
en |