HEAL DSpace

Velocity control of redundant robots using a global optimization approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzafestas, SG en
dc.contributor.author Zagorianos, A en
dc.contributor.author Dimou, P en
dc.date.accessioned 2014-03-01T01:46:16Z
dc.date.available 2014-03-01T01:46:16Z
dc.date.issued 1997 en
dc.identifier.issn 02329298 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/24880
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0031352950&partnerID=40&md5=3cc4468ea736db72580194040eb77906 en
dc.subject.other Equations of motion en
dc.subject.other Integral equations en
dc.subject.other Inverse kinematics en
dc.subject.other Inverse problems en
dc.subject.other Optimization en
dc.subject.other Redundancy en
dc.subject.other Robotics en
dc.subject.other Velocity control en
dc.subject.other Euler Lagrange equations en
dc.subject.other Hamilton principle en
dc.subject.other Redundant robots en
dc.subject.other Manipulators en
dc.title Velocity control of redundant robots using a global optimization approach en
heal.type journalArticle en
heal.publicationDate 1997 en
heal.abstract Kinematic and control considerations of redundant robots, i.e. robots with more than six axes of motion are currently of increasing interest. The inverse kinematic problem of such robots is treated here by taking into account both the system dynamics, expressed by its Lagrangian L, and the kinematic constraints of the robot. As an objective criterion the Hamilton principle is adopted which states that the actual path in the configuration space renders the value of the definite integral I = ∫t(1)t(2) Ldt stationary with respect to all arbitrary variations of the path between two time instants t1 and t2. Hence one asks for the best set of solutions which minimize the above integral, over the robot path, while the kinematic equation dx/dt = J(q)(dq/dt) of the manipulator holds. But the stationarity of the Hamilton principle implies the satisfaction of the Euler-Lagrange equations. Thus the joints of the manipulator are forced to follow the optimum path, obeying, at each time, the dynamic equations of the system. A numerical example concerning a robotic manipulator with one degree of redundancy illustrates the method. en
heal.publisher Gordon & Breach Science Publ Inc, Newark, NJ, United States en
heal.journalName Systems Analysis Modelling Simulation en
dc.identifier.volume 29 en
dc.identifier.issue 4 en
dc.identifier.spage 287 en
dc.identifier.epage 299 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής