dc.contributor.author |
Tzafestas, SG |
en |
dc.contributor.author |
Zagorianos, A |
en |
dc.contributor.author |
Dimou, P |
en |
dc.date.accessioned |
2014-03-01T01:46:16Z |
|
dc.date.available |
2014-03-01T01:46:16Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
02329298 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24880 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031352950&partnerID=40&md5=3cc4468ea736db72580194040eb77906 |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Inverse kinematics |
en |
dc.subject.other |
Inverse problems |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Redundancy |
en |
dc.subject.other |
Robotics |
en |
dc.subject.other |
Velocity control |
en |
dc.subject.other |
Euler Lagrange equations |
en |
dc.subject.other |
Hamilton principle |
en |
dc.subject.other |
Redundant robots |
en |
dc.subject.other |
Manipulators |
en |
dc.title |
Velocity control of redundant robots using a global optimization approach |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
Kinematic and control considerations of redundant robots, i.e. robots with more than six axes of motion are currently of increasing interest. The inverse kinematic problem of such robots is treated here by taking into account both the system dynamics, expressed by its Lagrangian L, and the kinematic constraints of the robot. As an objective criterion the Hamilton principle is adopted which states that the actual path in the configuration space renders the value of the definite integral I = ∫t(1)t(2) Ldt stationary with respect to all arbitrary variations of the path between two time instants t1 and t2. Hence one asks for the best set of solutions which minimize the above integral, over the robot path, while the kinematic equation dx/dt = J(q)(dq/dt) of the manipulator holds. But the stationarity of the Hamilton principle implies the satisfaction of the Euler-Lagrange equations. Thus the joints of the manipulator are forced to follow the optimum path, obeying, at each time, the dynamic equations of the system. A numerical example concerning a robotic manipulator with one degree of redundancy illustrates the method. |
en |
heal.publisher |
Gordon & Breach Science Publ Inc, Newark, NJ, United States |
en |
heal.journalName |
Systems Analysis Modelling Simulation |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
287 |
en |
dc.identifier.epage |
299 |
en |