HEAL DSpace

Analytical 2-D solutions for hydrodynamic, thermally and radiatively driven, astrophysical outflows. Applications to B stars

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kakouris, A en
dc.contributor.author Moussas, X en
dc.date.accessioned 2014-03-01T01:46:24Z
dc.date.available 2014-03-01T01:46:24Z
dc.date.issued 1997 en
dc.identifier.issn 0004-6361 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/24892
dc.subject hydrodynamics en
dc.subject stars: winds en
dc.subject atmospheres en
dc.subject flows en
dc.subject radiation pressure en
dc.subject methods: analytical en
dc.subject B supergiants: winds en
dc.subject atmospheres en
dc.subject mass-loss en
dc.subject.classification Astronomy & Astrophysics en
dc.subject.other OPTICALLY THIN LINES en
dc.subject.other STELLAR WINDS en
dc.subject.other EQUATORIAL PLANE en
dc.subject.other SOLAR-WIND en
dc.subject.other MODELS en
dc.subject.other JETS en
dc.subject.other ACCELERATION en
dc.subject.other ENVELOPES en
dc.subject.other FLOWS en
dc.subject.other DISKS en
dc.title Analytical 2-D solutions for hydrodynamic, thermally and radiatively driven, astrophysical outflows. Applications to B stars en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1997 en
heal.abstract In this work, we deal with the two-dimensional problem of steady plasma outflow from rotating central astrophysical gravitational objects. Considering the stellar atmosphere optically thin and the radiative force (due to the central object's luminosity) radial, we obtain fully analytical solutions for thermally and radiatively driven outflows. The flow is helicoidal and axisymmetric and the plasma inviscid and non-polytropic. First, we generalize the Kakouris & Moussas 1996 solution imposing a generalized geometry in the flow velocity which implies differential fluid rotation. The solutions are of four types with velocity maxima either along the equator or along the polar axis of the central body. The dependence of the solutions upon the radial distance R is similar to Kakouris & Moussas 1996 case for each type of solutions. Just assuming that the radiative acceleration is a function of the distance we obtain analytical 2-D solutions for thermally and radiatively driven outflows. The inclusion of the radiative force helps the generation of the stellar wind giving higher maximum radial velocities. The velocity asymmetry between the equator and the poles varies with radial distance and it is sensitive upon the relative strength of the adopted radiative force as well as upon the degree of the fluid differential rotation. Several possible dependences of the radiative acceleration upon the radial distance are considered, and the deduction of the wind transition from a strong radiative driving to a pure non-radiative thermally driven outflow is presented by the given applications. The incorporation of the radiative force in the hydrodynamic equations is very important in massive winds of early and late type main sequence stars and evolved giants and supergiants. We present analytical 2-D solutions for thermally plus radiatively driven stellar winds and we apply one kind of them to B5I type supergiants in order to understand the observed winds of these stars under a thermal (coronal) plus a radiative mechanism of ejecting stellar plasma in the interstellar medium. Maximum outflow velocities and mass loss rates, close to the observed, are easily obtained. en
heal.publisher SPRINGER VERLAG en
heal.journalName ASTRONOMY AND ASTROPHYSICS en
dc.identifier.isi ISI:A1997XT42200040 en
dc.identifier.volume 324 en
dc.identifier.issue 3 en
dc.identifier.spage 1071 en
dc.identifier.epage 1082 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής