dc.contributor.author |
Spiliopoulos, K |
en |
dc.contributor.author |
Sofianopoulou, S |
en |
dc.date.accessioned |
2014-03-01T01:46:40Z |
|
dc.date.available |
2014-03-01T01:46:40Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24983 |
|
dc.subject |
Cell Formation |
en |
dc.subject |
Distance Matrix |
en |
dc.subject |
Exact Solution |
en |
dc.subject |
Flexible Manufacturing System |
en |
dc.subject |
Group Technology |
en |
dc.subject |
Manufacturing System |
en |
dc.subject |
Optimal Solution |
en |
dc.subject |
Quadratic Assignment Problem |
en |
dc.subject |
Quadratic Program |
en |
dc.subject |
Search Method |
en |
dc.subject |
Transportation Problem |
en |
dc.subject |
Branch and Bound |
en |
dc.title |
An optimal tree search method for the manufacturing systems cell formation problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0377-2217(97)00078-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0377-2217(97)00078-7 |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
A solution methodology producting exact solutions to the manufacturing systems cell formation problem is presented. A distance matrix representing the closeness between pairs of machines with regard to the parts they process is taken into account. The proposed approach is an optimal tree search method which empoys two different bounds; a classical bound for the Quadratic Assignment Problem and a |
en |
heal.journalName |
European Journal of Operational Research |
en |
dc.identifier.doi |
10.1016/S0377-2217(97)00078-7 |
en |