dc.contributor.author |
Ambjørn, J |
en |
dc.contributor.author |
Anagnostopoulos, K |
en |
dc.contributor.author |
Ichihara, T |
en |
dc.contributor.author |
Jensen, L |
en |
dc.contributor.author |
Kawamoto, N |
en |
dc.contributor.author |
Watabiki, Y |
en |
dc.contributor.author |
Yotsuji, K |
en |
dc.date.accessioned |
2014-03-01T01:46:44Z |
|
dc.date.available |
2014-03-01T01:46:44Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25034 |
|
dc.subject |
Correlation Function |
en |
dc.subject |
Distance Scale |
en |
dc.subject |
Fast Algorithm |
en |
dc.subject |
Fractal Dimension |
en |
dc.subject |
Geodesic Distance |
en |
dc.subject |
Geometric Structure |
en |
dc.subject |
Quantum Gravity |
en |
dc.subject |
2 dimensional |
en |
dc.subject |
Space Time |
en |
dc.title |
Intrinsic geometric structure of c = −2 quantum gravity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0920-5632(97)00892-X |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0920-5632(97)00892-X |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
We couple c = −2 matter to 2-dimensional gravity within the gramework of dynamical triangulations. We use a very fast algorithm, special to the c = −2 case, in order to test scaling of correlation functions defined in terms of geodesic distance and we determine the fractal dimension dH with high accuracy. We find dH = 3.58(4), consistent with a |
en |
heal.journalName |
Nuclear Physics B-proceedings Supplements |
en |
dc.identifier.doi |
10.1016/S0920-5632(97)00892-X |
en |