dc.contributor.author |
Petropoulos, N |
en |
dc.date.accessioned |
2014-03-01T01:46:44Z |
|
dc.date.available |
2014-03-01T01:46:44Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25038 |
|
dc.subject |
Chiral Phase Transition |
en |
dc.subject |
Chiral Symmetry |
en |
dc.subject |
Composition Operator |
en |
dc.subject |
Effective Potential |
en |
dc.subject |
Finite Temperature |
en |
dc.subject |
First-order Phase Transition |
en |
dc.subject |
Linear Sigma Model |
en |
dc.subject |
Quantum Effect |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Symmetry Breaking |
en |
dc.subject |
Thermal Effects |
en |
dc.subject |
cornwall jackiw tomboulis |
en |
dc.subject |
Phase Transition |
en |
dc.subject |
Second Order |
en |
dc.title |
Linear sigma model and chiral symmetry at finite temperature |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0954-3899/25/11/305 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0954-3899/25/11/305 |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
The chiral phase transition is investigated within the framework of thelinear sigma model at finite temperature. We concentrate on the meson sector ofthe model and calculate the finite temperature effective potential in theHartree approximation by using the Cornwall-Jackiw-Tomboulis formalism ofcomposite operators. The effective potential is calculated for N=4 involvingthe usual sigma and three pions and |
en |
dc.identifier.doi |
10.1088/0954-3899/25/11/305 |
en |