dc.contributor.author |
Pessoa, L |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T01:46:50Z |
|
dc.date.available |
2014-03-01T01:46:50Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25057 |
|
dc.subject |
Image Processing |
en |
dc.subject |
Learning Process |
en |
dc.subject |
Linear Filtering |
en |
dc.subject |
lms algorithm |
en |
dc.subject |
Nonlinear System |
en |
dc.subject |
Optimal Design |
en |
dc.subject |
Steepest Descent Method |
en |
dc.subject |
Adaptive Filter |
en |
dc.subject |
Filter Design |
en |
dc.subject |
Image Restoration |
en |
dc.subject |
Indexing Terms |
en |
dc.subject |
Least Mean Square |
en |
dc.subject |
Nonlinear Filter |
en |
dc.subject |
Optimal Filtering |
en |
dc.subject |
Signal Processing |
en |
dc.subject |
System Identification |
en |
dc.subject |
Training Algorithm |
en |
dc.title |
MRL-filters: a general class of nonlinear systems and their optimal design for image processing |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/83.701150 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/83.701150 |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
A class of morphological/rank/linear (MRL)-filters is presented as a general nonlinear tool for image processing. They consist of a linear combination between a morphological/rank filter and a linear filter. A gradient steepest descent method is proposed to optimally design these filters, using the averaged least mean squares (LMS) algorithm. The filter design is viewed as a learning process, and convergence |
en |
heal.journalName |
IEEE Transactions on Image Processing |
en |
dc.identifier.doi |
10.1109/83.701150 |
en |