dc.contributor.author |
Kourogenis, N |
en |
dc.contributor.author |
Papageorgiou, N |
en |
dc.date.accessioned |
2014-03-01T01:46:51Z |
|
dc.date.available |
2014-03-01T01:46:51Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25065 |
|
dc.relation.uri |
http://www.intlpress.com/MAA/p/1998/5_3/MAA-5-3-273-282.pdf |
en |
dc.subject |
Compact Operator |
en |
dc.subject |
Differential Equation |
en |
dc.subject |
Maximal Monotone Operator |
en |
dc.subject |
Monotone Operator |
en |
dc.subject |
Neumann Boundary Condition |
en |
dc.subject |
Neumann Problem |
en |
dc.subject |
Ordinary Differential Equation |
en |
dc.subject |
sobolev space |
en |
dc.title |
On a class of quasilinear differential equations: the Neumann problem |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
In this paper, we consider a quasilinear ordinary differential equation with Neumann boundary conditions. Our formulation is general and incorporates the case of the one-dimensional Laplacian. Using an abstract result on the range of the sum of certain monotone operators, we prove the existence of a solution. Our approach is based on the theory of monotone operators and does not |
en |