dc.contributor.author |
Ambjørn, J |
en |
dc.contributor.author |
Anagnostopoulos, K |
en |
dc.contributor.author |
Jurkiewicz, J |
en |
dc.contributor.author |
Kristjansen, C |
en |
dc.date.accessioned |
2014-03-01T01:46:57Z |
|
dc.date.available |
2014-03-01T01:46:57Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25112 |
|
dc.relation.uri |
http://www.physics.ntua.gr/~konstant/homepage/publications/9802020.pdf |
en |
dc.subject |
2d gravity |
en |
dc.subject |
Critical Point |
en |
dc.subject |
Fractal Dimension |
en |
dc.subject |
Geodesic Distance |
en |
dc.subject |
hausdorff dimension |
en |
dc.subject |
ising model |
en |
dc.subject |
Lattice Model |
en |
dc.subject |
Models of Quantum Gravity |
en |
dc.subject |
Space Time |
en |
dc.title |
The Concept of Time in 2D Gravity |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
We show that the "time" ts defined via spin clusters in the Ising model coupled to 2d gravity leads to a fractal dimension dh(s) = 6 of space-time at the critical point, as advocated by Ishibashi and Kawai. In the unmagnetized phase, however, this definition of Hausdorff dimension breaks down. Numerical measurements are consistent with these results. The same definition |
en |