dc.contributor.author |
Ambjorn, J |
en |
dc.contributor.author |
Anagnostopoulos, K |
en |
dc.contributor.author |
Jurkiewicz, J |
en |
dc.contributor.author |
Kristjansen, C |
en |
dc.date.accessioned |
2014-03-01T01:46:57Z |
|
dc.date.available |
2014-03-01T01:46:57Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25113 |
|
dc.subject |
2d gravity |
en |
dc.subject |
Critical Point |
en |
dc.subject |
Fractal Dimension |
en |
dc.subject |
Geodesic Distance |
en |
dc.subject |
hausdorff dimension |
en |
dc.subject |
ising model |
en |
dc.subject |
Quantum Gravity |
en |
dc.subject |
Space Time |
en |
dc.title |
The Concept of Time in 2D Quantum Gravity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/1126-6708/1998/04/016 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/1126-6708/1998/04/016 |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
We show that the ``time'' t_s defined via spin clusters in the Ising modelcoupled to 2d gravity leads to a fractal dimension d_h(s) = 6 of space-time atthe critical point, as advocated by Ishibashi and Kawai. In the unmagnetizedphase, however, this definition of Hausdorff dimension breaks down. Numericalmeasurements are consistent with these results. The same definition |
en |
dc.identifier.doi |
10.1088/1126-6708/1998/04/016 |
en |