dc.contributor.author |
Kattis, M |
en |
dc.contributor.author |
Providas, E |
en |
dc.date.accessioned |
2014-03-01T01:47:03Z |
|
dc.date.available |
2014-03-01T01:47:03Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25124 |
|
dc.subject |
Anisotropic Elasticity |
en |
dc.subject |
Anisotropic Material |
en |
dc.title |
Two-phase potentials in anisotropic elasticity: antiplane deformation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0020-7225(97)00115-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0020-7225(97)00115-8 |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
Based upon the Lekhnitskii–Eshelby approach of two-dimensional anisotropic elasticity, it is shown that only one holomorphic function can fully describe the antiplane deformation of a composite consisting of two discrete phases of anisotropic materials. The complex potentials of the two phases are expressed in terms of this holomorphic function which constitutes the two-phase potential of the composite. The analysis is |
en |
heal.journalName |
International Journal of Engineering Science |
en |
dc.identifier.doi |
10.1016/S0020-7225(97)00115-8 |
en |