HEAL DSpace

An integral formulation of two- and three-dimensional dielectric structures using orthonormal multiresolution expansions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sabet, KF en
dc.contributor.author Katehi, LPB en
dc.date.accessioned 2014-03-01T01:47:07Z
dc.date.available 2014-03-01T01:47:07Z
dc.date.issued 1998 en
dc.identifier.issn 08943370 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/25149
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0031698388&partnerID=40&md5=13e7d8aa8bb803c9130808e1f63eec31 en
dc.subject.other Electric fields en
dc.subject.other Estimation en
dc.subject.other Integral equations en
dc.subject.other Matrix algebra en
dc.subject.other Wavelet transforms en
dc.subject.other Battle Lemarie multiresolution expansions en
dc.subject.other Multiresolution analysis (MRA) theory en
dc.subject.other Dielectric devices en
dc.title An integral formulation of two- and three-dimensional dielectric structures using orthonormal multiresolution expansions en
heal.type journalArticle en
heal.publicationDate 1998 en
heal.abstract This paper presents an efficient space domain integral formulation of planar dielectric structures based on the concepts of multiresolution analysis (MRA) theory. Battle-Lemarie multiresolution expansions are utilized in the moment method solution of a volume integral equation for the unknown electric field. The generation of sparse moment matrices is explained in view of the cancellation property of wavelet basis functions. The formulation is then applied to two- and three-dimensional dielectric structures including waveguides and resonators, and the numerical results and consequences of matrix sparsity are discussed in detail. © 1998 John Wiley & Sons, Ltd. en
heal.journalName International Journal of Numerical Modelling: Electronic Networks, Devices and Fields en
dc.identifier.volume 11 en
dc.identifier.issue 1 en
dc.identifier.spage 3 en
dc.identifier.epage 19 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής