HEAL DSpace

Cytological diagnosis based on fuzzy neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Blekas, K en
dc.contributor.author Stafylopatis, A en
dc.contributor.author Kontoravdis, D en
dc.contributor.author Likas, A en
dc.contributor.author Karakitsos, P en
dc.date.accessioned 2014-03-01T01:47:09Z
dc.date.available 2014-03-01T01:47:09Z
dc.date.issued 1998 en
dc.identifier.issn 03341860 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/25161
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0031623782&partnerID=40&md5=f5e741095abf3fdbbf6601aa034509a9 en
dc.subject Classification en
dc.subject Cytological diagnosis en
dc.subject Fuzzy min-max neural network en
dc.subject Image morphometry en
dc.subject.other Cells en
dc.subject.other Cytology en
dc.subject.other Fuzzy sets en
dc.subject.other Image analysis en
dc.subject.other Neural networks en
dc.subject.other Pattern recognition en
dc.subject.other Cytological diagnosis en
dc.subject.other Fuzzy min max neural networks en
dc.subject.other Image morphometry en
dc.subject.other Computer aided diagnosis en
dc.title Cytological diagnosis based on fuzzy neural networks en
heal.type journalArticle en
heal.publicationDate 1998 en
heal.abstract A diagnostic system is presented that employs morphometry combined with a fuzzy neural network approach, for the discrimination of benign from malignant gastric lesions. The input to the system consists of images of routine processed gastric smears stained by Papanicolaou technique. The analysis of the images provides a data set of cell features. The fuzzy minmax neural network classifier, an efficient pattern recognition approach, is used to classify benign and malignant cells based on the extracted morphometric and textural features. The fuzzy min-max classification network is based on hyperbox fuzzy sets and can be incrementally trained requiring only one pass through the training set. The application of the fuzzy min-max neural network yields high rates of correct classification at both the cell level and the patient level. These results indicate that the use of intelligent computational techniques along with image morphometry may offer very useful information about the potential of malignancy of gastric cells. en
heal.journalName Journal of Intelligent Systems en
dc.identifier.volume 8 en
dc.identifier.issue 1-2 en
dc.identifier.spage 55 en
dc.identifier.epage 76 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής