dc.contributor.author |
Blekas, K |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.contributor.author |
Kontoravdis, D |
en |
dc.contributor.author |
Likas, A |
en |
dc.contributor.author |
Karakitsos, P |
en |
dc.date.accessioned |
2014-03-01T01:47:09Z |
|
dc.date.available |
2014-03-01T01:47:09Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
03341860 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25161 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031623782&partnerID=40&md5=f5e741095abf3fdbbf6601aa034509a9 |
en |
dc.subject |
Classification |
en |
dc.subject |
Cytological diagnosis |
en |
dc.subject |
Fuzzy min-max neural network |
en |
dc.subject |
Image morphometry |
en |
dc.subject.other |
Cells |
en |
dc.subject.other |
Cytology |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Cytological diagnosis |
en |
dc.subject.other |
Fuzzy min max neural networks |
en |
dc.subject.other |
Image morphometry |
en |
dc.subject.other |
Computer aided diagnosis |
en |
dc.title |
Cytological diagnosis based on fuzzy neural networks |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
A diagnostic system is presented that employs morphometry combined with a fuzzy neural network approach, for the discrimination of benign from malignant gastric lesions. The input to the system consists of images of routine processed gastric smears stained by Papanicolaou technique. The analysis of the images provides a data set of cell features. The fuzzy minmax neural network classifier, an efficient pattern recognition approach, is used to classify benign and malignant cells based on the extracted morphometric and textural features. The fuzzy min-max classification network is based on hyperbox fuzzy sets and can be incrementally trained requiring only one pass through the training set. The application of the fuzzy min-max neural network yields high rates of correct classification at both the cell level and the patient level. These results indicate that the use of intelligent computational techniques along with image morphometry may offer very useful information about the potential of malignancy of gastric cells. |
en |
heal.journalName |
Journal of Intelligent Systems |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
55 |
en |
dc.identifier.epage |
76 |
en |