dc.contributor.author |
Voudouris, C |
en |
dc.date.accessioned |
2014-03-01T01:47:13Z |
|
dc.date.available |
2014-03-01T01:47:13Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
13583948 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25176 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0032115381&partnerID=40&md5=613b4880eed40f750f9fdbca69237fe0 |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Combinatorial mathematics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Scheduling |
en |
dc.subject.other |
Guide local search (GLS) |
en |
dc.subject.other |
Optimization |
en |
dc.title |
Guided Local Search - An illustrative example in function optimisation |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
The Guided Local Search method has been successfully applied to a number of hard combinatorial optimisation problems from the well-known TSP and QAP to real-world problems such as frequency assignment and workforce scheduling. In this paper, it is demonstrated that the potential applications of GLS are not limited to optimisation problems of discrete nature but also to difficult continuous optimisation problems. Continuous optimisation problems arise in many engineering disciplines (such as electrical and mechanical engineering) in the context of analysis, design or simulation tasks. The problem examined gives an illustrative example of the behaviour of GLS, providing insights on the mechanisms of the algorithm. |
en |
heal.journalName |
BT Technology Journal |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
46 |
en |
dc.identifier.epage |
50 |
en |