HEAL DSpace

Robust-adaptive gait control of a 9-link biped robot

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzafestas, SG en
dc.contributor.author Krikochoritis, AE en
dc.contributor.author Tzafestas, CS en
dc.date.accessioned 2014-03-01T01:47:27Z
dc.date.available 2014-03-01T01:47:27Z
dc.date.issued 1998 en
dc.identifier.issn 02329298 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/25215
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0031632646&partnerID=40&md5=7963f8ed938e596b92825fe0bc7b401f en
dc.subject.other Adaptive control systems en
dc.subject.other Anthropomorphic robots en
dc.subject.other Closed loop control systems en
dc.subject.other Computer simulation en
dc.subject.other Mathematical models en
dc.subject.other Nonlinear control systems en
dc.subject.other Parameter estimation en
dc.subject.other Robustness (control systems) en
dc.subject.other Time varying control systems en
dc.subject.other Adaptive gait control en
dc.subject.other Biped robots en
dc.subject.other Mobile robots en
dc.title Robust-adaptive gait control of a 9-link biped robot en
heal.type journalArticle en
heal.publicationDate 1998 en
heal.abstract The study and control of the locomotion of a biped robot has always been a challenging problem. The mechanical complexity of biped robots, the existence of an unpowered degree of freedom, and the peculiarity of their motion due to the repeatability of movements and a permanent change of situations during one step, synthesize a complex problem. At the same time, undesired collisions with its environment, transport of unknown loads, or simplification of some dynamic characteristics, cause uncertainty (structured or not) which makes worse the control problem since an accurate model of the biped robot is not available. In this paper a nine link planar biped model is studied. It is a biped robot that includes not only the main links: legs, thighs and trunk, but also a two segments foot. For this biped robot, the kinematic and dynamic equations which describe completely the locomotion of the robot during the different phases of walking, are defined. Furthermore, a continuous walking pattern on a flat terrain is designed and the corresponding desired trajectories of the robot joints are calculated. Then, a nonlinear robust control technique is adopted, based on the fact that the control which has to ensure the stability of the biped robot must take into account the nonlinear dynamics of the system. This requires the knowledge of an accurate model of the biped robot, a condition that is never fulfilled because of the existence of disturbances and modelling inaccuracies such as parametric uncertainty and unmodeled dynamics. Thus, for the case there is not available a priori information about the unknown parameters, the parametric uncertainty has to be gradually reduced on-line by an adaptation or estimation mechanism. Here, rapidly time-varying unknown parameters are assumed, and a kind of robust-adaptive controller is designed which achieves robustness in the face of such modelling imprecisions, while at the same time ensures that all signals in the closed-loop robot system are bounded and the tracking error is of the order of the parameter variations. Extensive simulation experiments showed the effectiveness of the proposed robust-adaptive control scheme. en
heal.publisher Gordon & Breach Science Publ Inc, Newark, NJ, United States en
heal.journalName Systems Analysis Modelling Simulation en
dc.identifier.volume 31 en
dc.identifier.issue 4 en
dc.identifier.spage 247 en
dc.identifier.epage 304 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής