HEAL DSpace

Stability robustness to unstructured uncertainties of linear systems controlled on the basis of the multirate sampling of the plant output

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Arvanitis, KG en
dc.contributor.author Kalogeropoulos, G en
dc.date.accessioned 2014-03-01T01:47:29Z
dc.date.available 2014-03-01T01:47:29Z
dc.date.issued 1998 en
dc.identifier.issn 02650754 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/25226
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0032165829&partnerID=40&md5=95169b937412d6022d7391beeb237de3 en
dc.subject.other Closed loop control systems en
dc.subject.other Control system analysis en
dc.subject.other Feedback control en
dc.subject.other Matrix algebra en
dc.subject.other Optimal control systems en
dc.subject.other Perturbation techniques en
dc.subject.other Robustness (control systems) en
dc.subject.other System stability en
dc.subject.other Transfer functions en
dc.subject.other Deterministic linear-quadratic optimal regulations en
dc.subject.other Inverse return-difference matrices en
dc.subject.other Multirate-output controllers (MROC) en
dc.subject.other Linear control systems en
dc.title Stability robustness to unstructured uncertainties of linear systems controlled on the basis of the multirate sampling of the plant output en
heal.type journalArticle en
heal.publicationDate 1998 en
heal.abstract The stability robustness of stable feedback loops designed on the basis of multirate-output controllers (MROCs) is analysed in this paper. For MROC-based feedback loops, designed to achieve stabilization through pole placement or deterministic linear-quadratic (LQ) optimal regulation, we characterize additive or multiplicative norm-bounded perturbations of the loop transfer-function matrix that do not destabilize the closed-loop system. New sufficient stability conditions in terms of the elementary MROC matrices are presented, for both static and (stable) dynamic MROCs. Moreover, lower bounds for the minimum singular values of the return-difference and of the inverse return-difference matrices are suggested for all cases of the aforementioned MROC-based stable feedback designs. Also suggested are guaranteed stability margins for MROC-based pole placers and LQ optimal regulators. A comparison between the suggested stability margins for static and (stable) dynamic MROCs is presented, while the superiority of these margins over known stability margins for deterministic LQ optimal regulators is identified. Finally, an analysis of the deficiency of the aforementioned stablity margins is presented for cases where the MROC feedback gains become very large, and useful guidelines are suggested for the choice of the sampling period and of the output multiplicities of the sampling to avoid this deficiency. en
heal.journalName IMA Journal of Mathematical Control and Information en
dc.identifier.volume 15 en
dc.identifier.issue 3 en
dc.identifier.spage 241 en
dc.identifier.epage 268 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής