dc.contributor.author |
Anastassopoulos, A |
en |
dc.contributor.author |
Nikolaidis, V |
en |
dc.contributor.author |
Philippidis, T |
en |
dc.date.accessioned |
2014-03-01T01:47:46Z |
|
dc.date.available |
2014-03-01T01:47:46Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25313 |
|
dc.subject |
Classification Error |
en |
dc.subject |
Feature Space |
en |
dc.subject |
Neural System |
en |
dc.subject |
Pattern Recognition |
en |
dc.subject |
Problem Complexity |
en |
dc.subject |
Ultrasound |
en |
dc.subject |
Upper Bound |
en |
dc.subject |
Minimum Classification Error |
en |
dc.subject |
Neural Net Work |
en |
dc.title |
A Comparative Study of Pattern Recognition Algorithms for Classification of Ultrasonic Signals |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s005210050007 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s005210050007 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
An extensive discrimination study was conducted on ultrasonic signals very similar to each other obtained from artificial inserts in a carbon fibre reinforced epoxy plate. The performance of fifteen classification schemes consisting of non-parametric pattern recognition and Artificial Neural System (ANS) algorithms is assessed in this paper. The purpose of this study is to define an upper bound for the |
en |
heal.journalName |
Neural Computing and Applications |
en |
dc.identifier.doi |
10.1007/s005210050007 |
en |