dc.contributor.author |
Ansari, A |
en |
dc.contributor.author |
Papavassilopoulos, G |
en |
dc.date.accessioned |
2014-03-01T01:47:46Z |
|
dc.date.available |
2014-03-01T01:47:46Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25316 |
|
dc.subject |
Indexing Terms |
en |
dc.subject |
Learning Algorithm |
en |
dc.subject |
mimo system |
en |
dc.subject |
Objective Function |
en |
dc.subject |
Multi Input Multi Output |
en |
dc.subject |
Multi Objective Optimization Problem |
en |
dc.title |
A generalized learning algorithm for an automaton operating in a multiteacher environment |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/3477.790442 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/3477.790442 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
Learning algorithms for an automaton operating in a multiteacher environment are considered. These algorithms are classified based on the number of actions given as inputs to the environments and the number of responses (outputs) obtained from the environments. In this paper, we present a general class of learning algorithm for multi-input multi-output (MIMO) models. We show that the proposed learning |
en |
heal.journalName |
IEEE Transactions on Systems, Man, and Cybernetics |
en |
dc.identifier.doi |
10.1109/3477.790442 |
en |