dc.contributor.author |
Providas, E |
en |
dc.contributor.author |
Kattis, M |
en |
dc.date.accessioned |
2014-03-01T01:47:47Z |
|
dc.date.available |
2014-03-01T01:47:47Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25324 |
|
dc.subject |
Degree of Freedom |
en |
dc.subject |
Directional Derivative |
en |
dc.subject |
Finite Element |
en |
dc.subject |
Finite Element Model |
en |
dc.subject |
Nonlinear Analysis |
en |
dc.subject |
Potential Energy |
en |
dc.subject |
Stability Analysis |
en |
dc.title |
A simple finite element model for the geometrically nonlinear analysis of thin shells |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s004660050445 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s004660050445 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
A triangular flat finite element for the analysis of thin shells which undergo large displacements is proposed. It is based upon the geometrically nonlinear theory of von Kármán for thin plates and the total Lagrangian approach. It has a total of only twelve degrees of freedom, namely, three translations at each vertex and one rotation at each mid-side. The stiffness |
en |
heal.journalName |
Computational Mechanics |
en |
dc.identifier.doi |
10.1007/s004660050445 |
en |