dc.contributor.author |
Georgilakis, P |
en |
dc.contributor.author |
Hatziargyriou, N |
en |
dc.contributor.author |
Paparigas, D |
en |
dc.contributor.author |
Bakopoulos, J |
en |
dc.contributor.author |
Elefsiniotis, S |
en |
dc.date.accessioned |
2014-03-01T01:47:49Z |
|
dc.date.available |
2014-03-01T01:47:49Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25340 |
|
dc.subject |
Artificial Neural Network |
en |
dc.subject |
Computer Based Learning |
en |
dc.subject |
Genetic Algorithm |
en |
dc.subject |
Group Process |
en |
dc.subject |
Iron |
en |
dc.subject |
On-line Control |
en |
dc.subject |
Decision Tree |
en |
dc.title |
Automatic learning techniques for on-line control and optimization of transformer core manufacturing process |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/IAS.1999.799973 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IAS.1999.799973 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
In this paper, a novel computer based learning framework that has been developed and applied for the online control and optimization of transformer core manufacturing process is presented. The proposed framework aims at predicting core losses of wound core distribution transformers at the early stages of transformer construction. Moreover, it is used to improve the grouping process of the individual |
en |
heal.journalName |
Legal Medicine |
en |
dc.identifier.doi |
10.1109/IAS.1999.799973 |
en |