dc.contributor.author |
Massias, A |
en |
dc.contributor.author |
Diamantis, D |
en |
dc.contributor.author |
Mastorakos, E |
en |
dc.contributor.author |
Goussis, D |
en |
dc.date.accessioned |
2014-03-01T01:48:01Z |
|
dc.date.available |
2014-03-01T01:48:01Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25383 |
|
dc.subject |
Chemical Kinetics |
en |
dc.subject |
Methane |
en |
dc.subject |
Nitric Oxide |
en |
dc.subject |
Reaction Mechanism |
en |
dc.subject |
Steady State |
en |
dc.subject |
Computational Singular Perturbation |
en |
dc.title |
Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/1364-7830/3/2/002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/1364-7830/3/2/002 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
Reduced mechanisms for methane-air and hydrogen-air combustion including NO formation have been constructed with the computational singular perturbation (CSP) method using the fully automated algorithm described by Massias et al. The analysis was performed on solutions of unstrained adiabatic premixed flames with detailed chemical kinetics described by GRI 2.11 for methane and a 71-reaction mechanism for hydrogen including NOx formation. |
en |
heal.journalName |
Combustion Theory and Modelling |
en |
dc.identifier.doi |
10.1088/1364-7830/3/2/002 |
en |