dc.contributor.author | Loll, R | en |
dc.contributor.author | Ambjørn, J | en |
dc.contributor.author | Anagnostopoulos, K | en |
dc.date.accessioned | 2014-03-01T01:48:03Z | |
dc.date.available | 2014-03-01T01:48:03Z | |
dc.date.issued | 1999 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/25398 | |
dc.subject | Path Integral | en |
dc.subject | Quantum Gravity | en |
dc.subject | Space Time | en |
dc.title | Making the gravitational path integral more Lorentzian or Life beyond Liouville gravity | en |
heal.type | journalArticle | en |
heal.publicationDate | 1999 | en |
heal.abstract | al triangulations, a recent variantof the Regge method. Unfortunately, all investigationsso far have concentrated on path integralsfor unphysical space-time metrics of Euclidean signature. Unlike for some fixed backgroundmetrics, there is no prescription of howto "Wick-rotate" a general Euclidean metric toLorentzian signature.On the other hand, a lot of progress has beenmade in the last ten years in an analytic formulationof canonical | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |