dc.contributor.author |
Doulamis, N |
en |
dc.contributor.author |
Doularnis, A |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T01:48:11Z |
|
dc.date.available |
2014-03-01T01:48:11Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25423 |
|
dc.subject |
Probabilistic Model |
en |
dc.subject |
Rate Control |
en |
dc.subject |
Video Conferencing |
en |
dc.subject |
Video Object Segmentation |
en |
dc.subject |
Neural Network |
en |
dc.title |
Object based coding of video sequences at low bit rates using adaptively trained neural networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/ICECS.1999.813394 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICECS.1999.813394 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
Unsupervised video object segmentation is proposed in this paper, using an adaptively trained neural network structure followed by a face and body detection scheme. The latter uses probabilistic modeling for applying the face and body detection task. The algorithm is incorporated along with a rate control mechanism, which allocates more bits to regions of importance, such as humans in video |
en |
dc.identifier.doi |
10.1109/ICECS.1999.813394 |
en |