dc.contributor.author |
Doulamis, A |
en |
dc.contributor.author |
Doulamis, N |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T01:48:13Z |
|
dc.date.available |
2014-03-01T01:48:13Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25437 |
|
dc.subject |
Content Based Retrieval |
en |
dc.subject |
Cross Correlation |
en |
dc.subject |
Genetic Algorithm |
en |
dc.subject |
Motion Segmentation |
en |
dc.subject |
Relevance Feedback |
en |
dc.subject |
Video Database |
en |
dc.subject |
Video Indexing |
en |
dc.subject |
Feedforward Neural Network |
en |
dc.subject |
Neural Network |
en |
dc.title |
Relevance feedback for content-based retrieval in video databases: a neural network approach |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/ICECS.1999.814514 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICECS.1999.814514 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
A neural network scheme is presented for adaptive video indexing and retrieval. First, a limited but characteristic amount of frames are extracted from each video scene, able to provide an efficient representation of the video content. For this reason, a cross correlation criterion is mini-cited using a genetic algorithm. Low level features are extracted to indicate the frame characteristics, such |
en |
dc.identifier.doi |
10.1109/ICECS.1999.814514 |
en |