dc.contributor.author |
Argyros, S |
en |
dc.contributor.author |
Gasparis, I |
en |
dc.date.accessioned |
2014-03-01T01:48:26Z |
|
dc.date.available |
2014-03-01T01:48:26Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25481 |
|
dc.relation.uri |
http://arxiv.org/abs/math/9911019 |
en |
dc.relation.uri |
http://www.ams.org/tran/2001-353-05/S0002-9947-01-02711-8/S0002-9947-01-02711-8.pdf |
en |
dc.subject |
banach space |
en |
dc.subject |
ramsey theory |
en |
dc.title |
Unconditional structures of weakly null sequences |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
The following dichotomy is established for a normalized weakly null sequencein a Banach space: Either every subsequence admits a convex block subsequenceequivalent to the unit vector basis of c, the Banach space of null sequencesunder the supremum norm, or there exists a subsequence which is boundedlyconvexly complete. This result generalizes J. Elton's dichotomy on weakly null |
en |