HEAL DSpace

A multilevel formulation of the finite-element method for electromagnetic scattering

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Atlamazoglou, PE en
dc.date.accessioned 2014-03-01T01:48:29Z
dc.date.available 2014-03-01T01:48:29Z
dc.date.issued 1999 en
dc.identifier.issn 0018926X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/25486
dc.subject Electromagnetic scattering en
dc.subject Finite-element method en
dc.subject Multigrid en
dc.subject Multilevel numerical techniques en
dc.subject.other Boundary conditions en
dc.subject.other Finite element method en
dc.subject.other Vectors en
dc.subject.other Multilevel formulation en
dc.subject.other Electromagnetic wave scattering en
dc.title A multilevel formulation of the finite-element method for electromagnetic scattering en
heal.type journalArticle en
heal.identifier.primary 10.1109/8.777134 en
heal.identifier.secondary http://dx.doi.org/10.1109/8.777134 en
heal.publicationDate 1999 en
heal.abstract Multigrid techniques for three-dimensional (3-D) electromagnetic scattering problems are presented. The numerical representation of the physical problem is accomplished via a finite-element discretization, with nodal basis functions. A total magnetic field formulation with a vector absorbing boundary condition (ABC) is used. The principal features of the multilevel technique are outlined. The basic multigrid algorithms are described and estimations of their computational requirements are derived. The multilevel code is tested with several scattering problems for which analytical solutions exist. The obtained results clearly indicate the stability, accuracy, and efficiency of the multigrid method. © 1999 IEEE. en
heal.journalName IEEE Transactions on Antennas and Propagation en
dc.identifier.doi 10.1109/8.777134 en
dc.identifier.volume 47 en
dc.identifier.issue 6 en
dc.identifier.spage 1071 en
dc.identifier.epage 1079 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής