dc.contributor.author |
Atlamazoglou, PE |
en |
dc.date.accessioned |
2014-03-01T01:48:29Z |
|
dc.date.available |
2014-03-01T01:48:29Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0018926X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25486 |
|
dc.subject |
Electromagnetic scattering |
en |
dc.subject |
Finite-element method |
en |
dc.subject |
Multigrid |
en |
dc.subject |
Multilevel numerical techniques |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Multilevel formulation |
en |
dc.subject.other |
Electromagnetic wave scattering |
en |
dc.title |
A multilevel formulation of the finite-element method for electromagnetic scattering |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/8.777134 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/8.777134 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
Multigrid techniques for three-dimensional (3-D) electromagnetic scattering problems are presented. The numerical representation of the physical problem is accomplished via a finite-element discretization, with nodal basis functions. A total magnetic field formulation with a vector absorbing boundary condition (ABC) is used. The principal features of the multilevel technique are outlined. The basic multigrid algorithms are described and estimations of their computational requirements are derived. The multilevel code is tested with several scattering problems for which analytical solutions exist. The obtained results clearly indicate the stability, accuracy, and efficiency of the multigrid method. © 1999 IEEE. |
en |
heal.journalName |
IEEE Transactions on Antennas and Propagation |
en |
dc.identifier.doi |
10.1109/8.777134 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
1071 |
en |
dc.identifier.epage |
1079 |
en |