HEAL DSpace

Affine invariant representation and classification of object contours for image and video retrieval

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Avrithis, Y en
dc.contributor.author Xirouhakis, Y en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T01:48:31Z
dc.date.available 2014-03-01T01:48:31Z
dc.date.issued 1999 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/25496
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-4944220656&partnerID=40&md5=ee9c3111dce7c8ff924b2a9ab8eac21c en
dc.subject Affine-invariant representation en
dc.subject Image and video retrieval and classification en
dc.subject Object contours en
dc.subject.other Computer simulation en
dc.subject.other Curve fitting en
dc.subject.other Database systems en
dc.subject.other Fourier transforms en
dc.subject.other Mathematical models en
dc.subject.other Textures en
dc.subject.other Video signal processing en
dc.subject.other Affine-invariant representation en
dc.subject.other Object contours en
dc.subject.other Video classification en
dc.subject.other Video retrieval en
dc.subject.other Image retrieval en
dc.title Affine invariant representation and classification of object contours for image and video retrieval en
heal.type journalArticle en
heal.publicationDate 1999 en
heal.abstract Recent literature comprises a large number of papers on the query and retrieval of visual information based on its content. At the same time, a number of prototype systems have been implemented enabling searching through on-line image databases--and still image retrieval. However, it has been often pointed out that meaningful/semantic information should be extracted from visual information in order to improve the efficiency and functionality of a content-based retrieval tool. In this context, present work focuses on the extraction of objects from images and video clips and modeling of the resulting object contours using B-splines. Affine-invariant curve representation is obtained through Normalized Fourier descriptors (NFD), curve moments, as well as a novel curve normalization algorithm that leads to major preservation of object shape information. A neural network approach is employed for supervised classification of video objects into prototype object classes. Experiments on several real-life and simulated video sequences are included to evaluate the classification results for all affine-invariant representations used. en
heal.publisher World Scientific and Engineering Academy and Society en
heal.journalName Computational Intelligence and Applications en
dc.identifier.spage 342 en
dc.identifier.epage 347 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής