HEAL DSpace

Compromising algorithmicity and plasticity in autonomous agent control architectures: The autonomous cell

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzafestas, ES en
dc.date.accessioned 2014-03-01T01:48:32Z
dc.date.available 2014-03-01T01:48:32Z
dc.date.issued 1999 en
dc.identifier.issn 03341860 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/25509
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0032658716&partnerID=40&md5=d2e437bb88ffcbbea3f5805f5bd92028 en
dc.subject Adaptation en
dc.subject Algorithmicity en
dc.subject Cellularity en
dc.subject Fault-tolerance en
dc.subject Plasticity en
dc.subject Self-organization en
dc.subject.other Adaptive systems en
dc.subject.other Artificial intelligence en
dc.subject.other Buffer storage en
dc.subject.other Computer networks en
dc.subject.other Computer simulation en
dc.subject.other Fault tolerant computer systems en
dc.subject.other Navigation systems en
dc.subject.other Redundancy en
dc.subject.other Adaptation en
dc.subject.other Algorithmicity en
dc.subject.other Autonomous cell en
dc.subject.other Cellularity en
dc.subject.other Self organization en
dc.subject.other Intelligent control en
dc.title Compromising algorithmicity and plasticity in autonomous agent control architectures: The autonomous cell en
heal.type journalArticle en
heal.publicationDate 1999 en
heal.abstract Whereas algorithmic autonomous agent control architectures demonstrate high efficiency, they suffer from network structure rigidity that shows in the liability to crucial errors. On the other hand, the redundancy inherent in most connectionist architectures allows for continuous self-organization that compensates for limited-scale neuron failures. In this work, we are seeking to compromise algorithmicity and plasticity in front of local network failures, by extending a basic algorithmic cell model. The extension is twofold: on the one hand we introduce motivation to the cell level, which shows as preference to consume some kinds of messages, while on the other hand we introduce sociality, which shows as adaptivity of the cell to the motivations of its neighbors. Unlike usual connectionist models, there are no connections between cells, but message buffers shared by all cells of a level; this way, cells can be viewed as floating in a common interaction medium and competing with one another. Another important feature of this arrangement is the necessity of an immune system, i.e., a population of cells that recognize and eliminate the messages that might be detrimental to the integrity of the cellular agent. The model's self-organizational potential is illustrated on the example case of a navigation system. Our simulation results show that the cellular network exhibit plasticity and recover from various types of failures by ""discovering"" alternative message flow pathways and that multiple failures slow down the system's responsiveness to external events. Issues such as selectivity and the role of diversity are also discussed. en
heal.journalName Journal of Intelligent Systems en
dc.identifier.volume 9 en
dc.identifier.issue 2 en
dc.identifier.spage 135 en
dc.identifier.epage 174 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής