HEAL DSpace

From synapses to rules: The self-referential perspective

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Apolloni, B en
dc.contributor.author Biella, G en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T01:48:36Z
dc.date.available 2014-03-01T01:48:36Z
dc.date.issued 1999 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/25526
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-4944267170&partnerID=40&md5=2d9253e9316ce3e5e49bda8b32bcf25b en
dc.subject Neural networks en
dc.subject Rule extraction en
dc.subject Symbolic/subsymbolic knowledge en
dc.subject.other Algorithms en
dc.subject.other Artificial intelligence en
dc.subject.other Brain en
dc.subject.other Codes (symbols) en
dc.subject.other Constraint theory en
dc.subject.other Formal logic en
dc.subject.other Functions en
dc.subject.other Robustness (control systems) en
dc.subject.other Genetic changes en
dc.subject.other Rule extraction en
dc.subject.other Symbolic knowledge en
dc.subject.other Neural networks en
dc.title From synapses to rules: The self-referential perspective en
heal.type journalArticle en
heal.publicationDate 1999 en
heal.abstract We consider the extraction of formal knowledge from a trained neural network in the perspective of identifying this network within our brain and the final user of this information with our brain again. We first analyze theoretical issues - mainly coming from AI, but also from neurophysiology and information theory - on relations and links between subsymbolic and symbolic knowledge in our brain. From this analysis a bipartition derives of the considered algorithms. From one side, there are direct methods for discovering Horn clauses and extensions from trained networks, a usual subject in many review papers. From the other side, we will identify symbolic knowledge with tools for efficiently managing concepts discovered in subsymbolic way in a self-referential framework where a neural network is however the user of the concepts. At first glance, this alternative perspective would just reconsider the direct methods in respect to the functionalities of the hidden_to_output nodes connections. But exactly after self referentiality, discovering formal connection should require a heavy training of the involved neural network, namely: a training capable of simulating the architectural and parametric refinement achieved by our brain along millennia. This calls for algorithms for symbolical learning that comply with neurophysiological functionality constraints, but shorten the mentioned long training phase, by using facilities now available to our brain - such as a preexisting formal knowledge and the capabilty of generating suitable examples by ourself. By definition, the output of these algorithms is exactly the goal knowledge springing from neural networks we are searching for. en
heal.publisher World Scientific and Engineering Academy and Society en
heal.journalName Computational Intelligence and Applications en
dc.identifier.spage 61 en
dc.identifier.epage 66 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής