HEAL DSpace

Global bifurcation results for a semilinear biharmonic equation on all of IRN

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stavrakakis, NM en
dc.contributor.author Zographopoulos, N en
dc.date.accessioned 2014-03-01T01:48:36Z
dc.date.available 2014-03-01T01:48:36Z
dc.date.issued 1999 en
dc.identifier.issn 02322064 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/25527
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-22844457274&partnerID=40&md5=192be858817beba9aa48ed22570dd14b en
dc.subject Biharmonic equations en
dc.subject Indefinite weights en
dc.subject Local and global bifurcation theory en
dc.subject Maximum principle en
dc.subject Nonlinear eigenvalue problems en
dc.title Global bifurcation results for a semilinear biharmonic equation on all of IRN en
heal.type journalArticle en
heal.publicationDate 1999 en
heal.abstract We prove existence of positive solutions for the semilinear problem (-Δ)2u = λg(x)f(u), u(x) > 0 (x ∈ ℝN), lim|x|→+∞u(x) = 0 under the main hypothesis N > 4 and g ∈ LN/4(ℝN). First, we employ classical spectral analysis for the existence of a simple positive principal eigenvalue for the linearized problem. Next, we prove the existence of a global continuum of positive solutions for the problem above, branching out from the first eigenvalue of the differential equation in the case that f(u) = u. This fact is achieved by applying standard local and global bifurcation theory. It was possible to carry out these methods by working between certain equivalent weighted and homogeneous Sobolev spaces. © Heldermann Verlag. en
heal.journalName Zeitschrift fur Analysis und ihre Anwendung en
dc.identifier.volume 18 en
dc.identifier.issue 3 en
dc.identifier.spage 753 en
dc.identifier.epage 766 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής