dc.contributor.author |
Stavrakakis, NM |
en |
dc.contributor.author |
Zographopoulos, N |
en |
dc.date.accessioned |
2014-03-01T01:48:36Z |
|
dc.date.available |
2014-03-01T01:48:36Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
02322064 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25527 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-22844457274&partnerID=40&md5=192be858817beba9aa48ed22570dd14b |
en |
dc.subject |
Biharmonic equations |
en |
dc.subject |
Indefinite weights |
en |
dc.subject |
Local and global bifurcation theory |
en |
dc.subject |
Maximum principle |
en |
dc.subject |
Nonlinear eigenvalue problems |
en |
dc.title |
Global bifurcation results for a semilinear biharmonic equation on all of IRN |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
We prove existence of positive solutions for the semilinear problem (-Δ)2u = λg(x)f(u), u(x) > 0 (x ∈ ℝN), lim|x|→+∞u(x) = 0 under the main hypothesis N > 4 and g ∈ LN/4(ℝN). First, we employ classical spectral analysis for the existence of a simple positive principal eigenvalue for the linearized problem. Next, we prove the existence of a global continuum of positive solutions for the problem above, branching out from the first eigenvalue of the differential equation in the case that f(u) = u. This fact is achieved by applying standard local and global bifurcation theory. It was possible to carry out these methods by working between certain equivalent weighted and homogeneous Sobolev spaces. © Heldermann Verlag. |
en |
heal.journalName |
Zeitschrift fur Analysis und ihre Anwendung |
en |
dc.identifier.volume |
18 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
753 |
en |
dc.identifier.epage |
766 |
en |