HEAL DSpace

Iterative evaluation of regularization parameters in regularized image restoration with wavelet filter banks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stephanakis, I en
dc.contributor.author Doulamis, N en
dc.contributor.author Doulamis, A en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T01:48:36Z
dc.date.available 2014-03-01T01:48:36Z
dc.date.issued 1999 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/25531
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-4944251691&partnerID=40&md5=3a2c4384d7a34c51692a48165f4b6c1f en
dc.subject Filter banks en
dc.subject Iterative methods en
dc.subject Multiresolution en
dc.subject Regularized image restoration en
dc.subject Wavelets en
dc.subject.other Image quality en
dc.subject.other Iterative methods en
dc.subject.other Matrix algebra en
dc.subject.other Parameter estimation en
dc.subject.other Signal to noise ratio en
dc.subject.other Spurious signal noise en
dc.subject.other Wave filters en
dc.subject.other Filter banks en
dc.subject.other Multiresolution en
dc.subject.other Regularized image restoration en
dc.subject.other Wavelets en
dc.subject.other Image retrieval en
dc.title Iterative evaluation of regularization parameters in regularized image restoration with wavelet filter banks en
heal.type journalArticle en
heal.publicationDate 1999 en
heal.abstract A novel approach of iterative regularized restoration of images based upon multirate representations is proposed in this paper. Regularized restoration is a method of solving the ill-posed inversion problem of image restoration. Inversion of usual degradations without regularization enhances the noise in the degraded image and may not be employed in practice. Wavelet filter-banks designed upon arbitrarily sampling lattices are proposed in order to replace the conventional regularization operator (usually a Laplacian filter) in regularized restoration of images. The proposed method employs a regularization parameter for each of the decomposition filters in the wavelet filter-bank. Thus it differs from standard regularized restoration methods which define just one regularization parameter corresponding to the smoothing filter. The regularization parameters should be estimated in advance or iteratively. A good estimate guaranties a good quality of the restored image. Statistical techniques like Generalized-Cross-Validation (GCV) may be used for estimating the regularization parameters in advance whereas the current estimate of the restored image may be used in estimating the regularization parameters in an iteratively solution of the regularization equation. A perfect reconstruction filter-bank can be used to represent the degradation filter. Factorizations of unitary matrices using Givens rotations allow for efficient representations for a variety of degradations. Should both the degradation and the smoothing filter be replaced by multirate systems, the restoration problem may be split into independent restoration problems in-each transformation channel. Regularization parameters are evaluated iteratively in each channel using image information from the corresponding subband and other channel dependent parameters. Numerical results indicate better ISNR (Improvement in Signal-to-Noise-Ratio) figures than conventional iterative regularization methods. en
heal.publisher World Scientific and Engineering Academy and Society en
heal.journalName Computational Intelligence and Applications en
dc.identifier.spage 348 en
dc.identifier.epage 353 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής