HEAL DSpace

Outlier detection by robust principal components analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Caroni, C en
dc.date.accessioned 2014-03-01T01:48:41Z
dc.date.available 2014-03-01T01:48:41Z
dc.date.issued 1999 en
dc.identifier.issn 03610926 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/25560
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-28544436933&partnerID=40&md5=7c00e07b541948d39035f959f6b33cdc en
dc.subject Multivariate outliers en
dc.subject Outlier tests en
dc.subject Principal components analysis en
dc.subject Robust estimation en
dc.title Outlier detection by robust principal components analysis en
heal.type journalArticle en
heal.publicationDate 1999 en
heal.abstract The robust principal components analysis (RPCA) introduced by Campbell (Applied Statistics 1980, 29, 231-237) provides in addition to robust versions of the usual output of a principal components analysis, weights for the contribution of each point to the robust estimation of each component. Low weights may thus be used to indicate outliers. The present simulation study provides critical values for testing the kth smallest weight in the RPCA of a sample of n p-dimensional vectors, under the null hypothesis of a multivariate normal distribution. The cases p=2(2)10, 15, 20 for n=20, 30, 40, 50, 75, 100 subject to n≥p/2, are examined, with k≤√n. Copyright © 2000 by Marcel Dekker, Inc. en
heal.journalName Communications in Statistics - Theory and Methods en
dc.identifier.volume 29 en
dc.identifier.issue 1 en
dc.identifier.spage 139 en
dc.identifier.epage 151 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής