dc.contributor.author | Caroni, C | en |
dc.date.accessioned | 2014-03-01T01:48:41Z | |
dc.date.available | 2014-03-01T01:48:41Z | |
dc.date.issued | 1999 | en |
dc.identifier.issn | 03610926 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/25560 | |
dc.relation.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-28544436933&partnerID=40&md5=7c00e07b541948d39035f959f6b33cdc | en |
dc.subject | Multivariate outliers | en |
dc.subject | Outlier tests | en |
dc.subject | Principal components analysis | en |
dc.subject | Robust estimation | en |
dc.title | Outlier detection by robust principal components analysis | en |
heal.type | journalArticle | en |
heal.publicationDate | 1999 | en |
heal.abstract | The robust principal components analysis (RPCA) introduced by Campbell (Applied Statistics 1980, 29, 231-237) provides in addition to robust versions of the usual output of a principal components analysis, weights for the contribution of each point to the robust estimation of each component. Low weights may thus be used to indicate outliers. The present simulation study provides critical values for testing the kth smallest weight in the RPCA of a sample of n p-dimensional vectors, under the null hypothesis of a multivariate normal distribution. The cases p=2(2)10, 15, 20 for n=20, 30, 40, 50, 75, 100 subject to n≥p/2, are examined, with k≤√n. Copyright © 2000 by Marcel Dekker, Inc. | en |
heal.journalName | Communications in Statistics - Theory and Methods | en |
dc.identifier.volume | 29 | en |
dc.identifier.issue | 1 | en |
dc.identifier.spage | 139 | en |
dc.identifier.epage | 151 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |