dc.contributor.author |
Maragos, Petros |
en |
dc.date.accessioned |
2014-03-01T01:48:42Z |
|
dc.date.available |
2014-03-01T01:48:42Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
10535888 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25574 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0032761711&partnerID=40&md5=c9ebefecd770a632abe36c04624441ec |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Fractals |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Nonlinear filtering |
en |
dc.subject.other |
Signal detection |
en |
dc.subject.other |
Spurious signal noise |
en |
dc.subject.other |
Homomorphic systems |
en |
dc.subject.other |
Digital signal processing |
en |
dc.title |
Recent developments in the core of digital signal processing: Non-linear signal processing |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
A small number of groups of classes of nonlinear systems that received attention from the digital signal processing (DSP) community or search is described. They are only samples that indicate the diversity of the nonlinear area. Many classes of nonlinear systems proved to be useful and often necessary, in many problems of filtering, vision, speech, communications, control, and pattern recognition. There will always be a need for nonlinear DSP to provide discrete models and robust numerical algorithms for solving detection/estimation/classification problems related to the applications of nonlinear systems. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
IEEE Signal Processing Magazine |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
28 |
en |
dc.identifier.epage |
31 |
en |