dc.contributor.author |
Karathanassi, V |
en |
dc.contributor.author |
Iossifidis, C |
en |
dc.contributor.author |
Rokos, D |
en |
dc.date.accessioned |
2014-03-01T01:48:50Z |
|
dc.date.available |
2014-03-01T01:48:50Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0143-1161 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25607 |
|
dc.subject.classification |
Remote Sensing |
en |
dc.subject.classification |
Imaging Science & Photographic Technology |
en |
dc.subject.other |
ALGORITHM |
en |
dc.title |
A thinning-based method for recognizing and extracting peri-urban road networks from SPOT panchromatic images |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
In this paper we describe a method for recognizing and extracting the road network in peri-urban areas using SPOT panchromatic images. A particular combination of image representation-description algorithms is proposed, which recognizes road features-not clearly defined in remotely sensed images and often confused with other features-and extracts them. The method consists of five algorithms-thresholding, morphological, thinning, linking, and gap filling-that are used sequentially. The only human intervention required is the definition of a threshold. The proposed approach produces a raster road network representation that is highly complete and locationally accurate. Some experimental results are given in this paper. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
INTERNATIONAL JOURNAL OF REMOTE SENSING |
en |
dc.identifier.isi |
ISI:000078535400012 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
153 |
en |
dc.identifier.epage |
168 |
en |